Detailansicht
Investigation of entanglement and Heisenberg's uncertainty relation in the neutral kaon system
Sasa Radic
Art der Arbeit
Diplomarbeit
Universität
Universität Wien
Fakultät
Fakultät für Physik
Betreuer*in
Beatrix Hiesmayr
DOI
10.25365/thesis.16378
URN
urn:nbn:at:at-ubw:1-29866.23005.521866-1
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)
Abstracts
Abstract
(Deutsch)
Diese Diplomarbeit schneidet zwei Gebiete der Physik an: die Teilchenphysik und
die Grundlagen der Quantenmechanik. Verbunden werden die Teilgebiete durch das
neutrale Kaonensystem, welches eine der interessantesten und aufregendsten Eigenschaften
der Quantenmechanik vorweisen kann: Verschr¨ankung. Verschr¨ankung ist
ein heftig diskutiertes Thema, da es eigenartige Konsequenzen mit sich bringt sowie
neuartige Verwendungen erm¨oglicht (z.B. Quantenkryptographie). Das Ph¨anomen
der Verschr¨ankung konnte in verschiedenen Systemen beobachtet werden, was eventuell
auch auf biologische Systeme ausgeweitet werden kann.
In dieser Arbeit legen wir den Schwerpunkt auf ein massives verschr¨anktes System,
das System der neutralen Kaonen, und untersuchen quanteninformationstheoretische
Fragen. Das System oszilliert zwischen Teilchen- und Antiteilchen-Zustand
(sogenannte Strangeness Oszillation). Weiters ist es ein zerfallendes System. Dar¨uber
hinaus verletzt es die CP Symmetrie (Ladungssymmetrie C und Parit¨at P, Nobelpreis
1980), d.h. es beweist, dass es einen Unterschied zwischen derWelt der Materie
und der Welt der Antimaterie gibt. Die Bestimmung des Ursprungs dieser Symmetrieverletzung
stellt noch immer ein ungel¨ostes Problem in der Teilchenphysik dar.
Wir werden verschiedene Herangehensweisen zur Beschreibung der Ph¨anomenologie
des neutralen Kaonen Systems - welches sich betr¨achlich von stabilen Systemen unterscheidet
- vorstellen und diskutieren, um sie in den Bell Ungleichungen und in
Heisenberg’s Unsch¨arferelation in der entropischen Version anzuwenden. Desweiteren
zeigen wir, dass die CP Verletzung Unsicherheit in die Dynamik bringt.
Abstract
(Englisch)
This thesis covers two distinct fields in physics: Particle Physics and the Foundations
of Quantum Mechanics. The crossover is made by the neutral kaon system,
which can be equipped with one of the most exciting attributes of quantum
mechanics: Entanglement. Entanglement is a hot discussed topic as it leads to peculiar
consequences and has been shown to have novel applications (e.g. quantum
cryptography). It has been found in many different physical systems and possibly
also in biological systems.
In this work we focus on a massive entangled system, the neutral kaon system,
and discuss quantum information theoretic questions. This system is oscillating
between its particle and antiparticle state (so called strangeness oscillation), and is
decaying. Moreover, it violates the CP symmetry (charge symmetry C and parity
symmetry P, nobel prize 1980), i.e. it proves that there is a difference between a
world of matter and a world of antimatter. The origin of this symmetry violation
is still a big open problem in Particle Physics. We present and discuss different
frameworks to describe the phenomenology of the neutral kaon system - which is
considerably different to stable systems - and apply them to analyze Bell inequalities
and the Heisenberg uncertainty principle in the entropic version. In particular, we
show that the CP violation introduces uncertainty to the dynamics.
Schlagwörter
Schlagwörter
(Englisch)
kaon entanglement uncertainty relation
Schlagwörter
(Deutsch)
Kaon Verschränkung Unschärferelation
Autor*innen
Sasa Radic
Haupttitel (Englisch)
Investigation of entanglement and Heisenberg's uncertainty relation in the neutral kaon system
Paralleltitel (Deutsch)
Untersuchung von Verschränkung und der Heisenbergschen Unschärferelation für das neutrale Kaonsystem
Publikationsjahr
2011
Umfangsangabe
Getr. Zähl. : Ill.
Sprache
Englisch
Beurteiler*in
Beatrix Hiesmayr
Klassifikationen
33 Physik > 33.10 Theoretische Physik: Allgemeines ,
33 Physik > 33.23 Quantenphysik
AC Nummer
AC08819651
Utheses ID
14686
Studienkennzahl
UA | 411 | | |