Detailansicht

Complex-valued analytic torsion on compact bordisms
Osmar Maldonado
Art der Arbeit
Dissertation
Universität
Universität Wien
Fakultät
Fakultät für Mathematik
Betreuer*in
Stefan Haller
Volltext herunterladen
Volltext in Browser öffnen
Alle Rechte vorbehalten / All rights reserved
DOI
10.25365/thesis.28995
URN
urn:nbn:at:at-ubw:1-29791.05728.893165-6
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)

Abstracts

Abstract
(Deutsch)
Wir berechnen diese Koeffizienten, indem wir die von Bruening und Ma gefundenen Formeln fuer die Ray--Singer Metrik benutzen. Schliesslich definieren wir coEuler Strukturen auf einem kompakten riemannschen Bordismus. Im Rahmen einer geschlossenen Mannigfaltigkeit sind CoEuler Strukturen von Burghelea und Haller studiert worden. In unserem Fall wird der Raum von coEuler Strukturen als ein affiner Raum ueber die relative (bzw. N) Kohomologie Gruppe im Grad m-1 von M definiert. Diese koennen als duale Objekte fuer die Euler-Strukturen von Turaev angesehen werden.
Abstract
(Englisch)
A compact Riemannian bordism is a compact manifold M of dimension m, with Riemannian metric g, whose boundary N is the disjoint union of two closed submanifolds V and W, with absolute boundary conditions on V and relative ones on W. This thesis is concerned with the complex-valued analytic torsion on compact Riemannian bordisms. Consider E, a flat complex vector bundle over M, with a Hermitian metric h. The Ray--Singer metric, defined with the use of self-adjoint Laplacians, acting on E-valued smooth forms satisfying the boundary conditions above, is a Hermitian metric on the determinant line of the relative cohomology groups (with respect to W). Assume E is endowed with a fiber-wise nondegenerate complex symmetric bilinear form b. The complex-valued analytic torsion considered as a nondegenerate bilinear form on the determinant line was first studied by Burghelea and Haller on closed manifolds in analogy with the Ray--Singer metric. In order to define this torsion one uses spectral theory of certain not necessarily self-adjoint Laplacians In few words, one looks at the restriction of the bilinear form to the generalized zero-eigenspace of the generalized Laplacian and considers the corresponding induced nondegenerate bilinear on the determinant line of the relative cohomology groups Thus, the complex-valued analytic torsion is the product of this bilinear form with the non-zero complex number obtained as zeta-regularized determinant of generalized Laplacians. The variation of the torsion with respect to smooth changes of the Riemannian metric and the bilinear form is encoded in the anomaly formulas. In order to obtain these formulas, we use the coefficient of the constant term in the heat trace asymptotic expansion for small time, associated to the generalized Laplacian. Our method uses the anomaly formulas for the Ray--Singer metric obtained by Bruening and Ma. CoEuler structures, the dual notion to Euler Structures of Turaev, were used by Burghelea and Haller to discuss the anomaly formulas for the torsion on closed manifolds. We extend the notion of coEuler structures to the situation of compact Riemannian bordisms. The space of coEuler structures is an affine space modeled by the relative cohomology group (wrt N) in degree m-1.

Schlagwörter

Schlagwörter
(Englisch)
analytic torsion bordisms asymptotic expansion bilinear hermitian Laplacians relative absolute
Schlagwörter
(Deutsch)
Analytische Torsion Bordismem Randbedingungen asymptotische Expansion Bilinearforme Laplaceoperatoren Hermitische
Autor*innen
Osmar Maldonado
Haupttitel (Englisch)
Complex-valued analytic torsion on compact bordisms
Paralleltitel (Deutsch)
Komplexwertige analytische Torsion auf kompakten Bordismen
Publikationsjahr
2013
Umfangsangabe
XIII,131 S. : graph. Darst.
Sprache
Englisch
Beurteiler*innen
Jochen Brüning ,
Maxim Braverman
Klassifikationen
31 Mathematik > 31.52 Differentialgeometrie ,
31 Mathematik > 31.55 Globale Analysis
AC Nummer
AC11101427
Utheses ID
25874
Studienkennzahl
UA | 091 | 405 | |
Universität Wien, Universitätsbibliothek, 1010 Wien, Universitätsring 1