Detailansicht
On the structure of countable Borel equivalence relations and the classification problem for torsion-free abelian groups
Fabio Elio Tonti
Art der Arbeit
Masterarbeit
Universität
Universität Wien
Fakultät
Fakultät für Mathematik
Betreuer*in
Sy-David Friedman
DOI
10.25365/thesis.34634
URN
urn:nbn:at:at-ubw:1-30465.78926.901766-0
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)
Abstracts
Abstract
(Deutsch)
Das Ziel dieser Masterarbeit ist die Darstellung einiger rezenter Re-
sultate über die Struktur abzählbarer Borel-Äquivalenzrelationen. Die
Arbeit beginnt mit der Einführung wesentlicher Voraussetzungen aus der
deskriptiven Mengenlehre. §3 gibt einen vollständigen Beweis eines Re-
sultates von Popa, das Rigiditätsphänomene von Property (T) Gruppen
beschreibt. Mithilfe dieses Resultates und der in §4 dargestellten Eigen-
schaften der speziellen linearen Gruppen über den ganzen Zahlen wird
in §5 das Resultat von Scot Adams und Alexander S. Kechris bewiesen,
welches besagt, dass Continuum-viele unvergleichbare abzählbare Borel-
Äquivalenzrelationen existieren. Der Höhepunkt dieser Arbeit ist §6, wo
mehrere Resultate von Simon Thomas über die Komplexität des Klassi-
fikationsproblemes für abzählbare torsionsfreie abelsche Gruppen endlichen
Ranges dargelegt werden. Der hier beschriebene Beweis folgt der neuen
Beweismethode von Samuel Coskey und verwendet Adrian Ioanas Su-
perrigidity Theorem.
Abstract
(Englisch)
This thesis provides an exposition of some recent results on the struc-
ture of countable Borel equivalence relation. We start by introducing the
relevant concepts from descriptive set theory. The main tool for our ex-
ploration of the poset of countable Borel equivalence relations is given by
Sorin Popa’s cocycle superrigidity theorem, which is proved in detail in
§3, by means of the ergodic-theoretic methods provided by Alex Furman.
Together with the properties of the special linear group over the integers
described in §4 (mainly property (T)), these are the tools of the trade for
the last two sections. In §5 we show how to directly derive the result
of Scot Adams and Alexander S. Kechris on the existence of continuum-
many incomparable countable Borel equivalence relations by means of
Popa’s theorem. We conclude this thesis by giving a detailed sketch of
Simon Thomas’s proof that the complexity of the classification problem
for torsion-free abelian groups of fixed finite rank increases strictly (in
the Borel sense) as the rank increases; we furthermore show the result of
Thomas that these countably many Borel equivalence relations obtained
from this classification problem are not cofinal in the poset of countable
Borel equivalence relations. The proof we provide here is by Samuel
Coskey, by means of Adrian Ioana’s superrigidity theorem.
Schlagwörter
Schlagwörter
(Englisch)
Descriptive Set Theory Borel Equivalence Relations Representation Theory Abelian Group Theory Property (T) Ergodic Theory
Schlagwörter
(Deutsch)
Deskriptive Mengenlehre Borel-Äquivalenzrelationen Darstellungstheorie Abelsche Gruppen Property (T) Ergodentheorie
Autor*innen
Fabio Elio Tonti
Haupttitel (Englisch)
On the structure of countable Borel equivalence relations and the classification problem for torsion-free abelian groups
Publikationsjahr
2014
Umfangsangabe
109 S.
Sprache
Englisch
Beurteiler*in
Sy-David Friedman
Klassifikationen
31 Mathematik > 31.10 Mathematische Logik, Mengenlehre ,
31 Mathematik > 31.41 Reelle Analysis
AC Nummer
AC12178697
Utheses ID
30732
Studienkennzahl
UA | 066 | 821 | |