Detailansicht

An analytical and computational approach to steady-state optomechanical systems by quantum Langevin equations
Klemens Winkler
Art der Arbeit
Masterarbeit
Universität
Universität Wien
Fakultät
Fakultät für Physik
Studiumsbezeichnung bzw. Universitätlehrgang (ULG)
Masterstudium Physik
Betreuer*in
Markus Aspelmeyer
Volltext herunterladen
Volltext in Browser öffnen
Alle Rechte vorbehalten / All rights reserved
DOI
10.25365/thesis.53192
URN
urn:nbn:at:at-ubw:1-23863.08746.889066-8
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)

Abstracts

Abstract
(Deutsch)
Die Motivation hinter meiner Masterarbeit ist es einen klaren theoretischen Einblick in das gerade laufende Experiment an der Universität Wien innerhalb der Arbeitsgruppe von Univ.- Prof. Dr. Markus Aspelmeyer zur Erzeugung und Detektion von CV Verschränkung in optomechanischen Systemen [HO17] zu erhalten. In diesem Experiment sollen nicht-klassische Korrelationen zwischen Lichtfeld und mechanischen Komponente eines optomechanischen Aufbaus nachgewiesen werden. Da die mechanische Komponente des Experiments jedoch nur schwer für die Detektion zugänglich ist wird diese Art der Korrelationen über zwei zeitlich getrennten Pulsen im aus der Cavity austretenden Lichtfeld nachgewiesen wobei durch die optomechanische Interaktion der Zustand des mechanischen Subsystems auf das Lichtfeld übertragen wird. Im ersten Teil meiner Arbeit betrachten wir ein optomechanisches System bestehend aus einem Fabry-Pérot-cavity mit einem beweglichen Endspiegel. Im speziellen sind wir an der Interaktion zwischen dem optischen und dem mechanischen Subsystem interessiert, welche durch die linearisierten Quanten Langevin Gleichungen (QLG) beschrieben wird. Im zweiten Teil meiner Arbeit präsentiere ich einen Weg um die erhaltenen linearisierten QLG für den Gleichgewichtszustands des Systems auf analytische Weise zu lösen. Zusätzlich diskutiere ich die Anwendung zweier Filterfunktionen auf das austretende Lichtfeld wodurch es möglich ist zwei zeitlich getrennte Moden entsprechend den Pulsen im eigentlichen Experiment zu definieren und ihre Verschränkung zu untersuchen. Alle diskutierten Aspekte gipfeln letztendlich in der Implementation eines Programmes welches es dem Anwender erlaubt die Kovarianzen Matrizen für unterschiedliche Konstellationen von Subsysteme zu generieren. Mit Hilfe dieses Programmes werden Einflüsse verschiedener Parameter auf die Verschränkung im System des oben genannten Experimentes untersucht und so sodass Vorhersagen für optimale experimentelle Parameter gemacht werden können.
Abstract
(Englisch)
The motivation behind my master thesis is to gain a clear theoretical insight into the currently running experiment at the University of Vienna within the research group of Univ.-Prof. Dr. Markus Aspelmeyer for the generation and detection of CV entanglement in optomechanical systems. In this experiment, non-classical correlations between the light field and the mechanical component of an optomechanical structure are to be demonstrated. Since the mechanical component of the experiment is difficult to access for detection, this type of correlations is detected via two temporally separated pulses in the light field emerging from the cavity, whereby the state of the mechanical subsystem is be transferred to the light field by the optomechanical interaction. In the first part of my work, we consider an optomechanical system consisting of a Fabry- Pérot cavity wiht a moving end mirror. We are especially interested in the interaction between the optical and the mechanical subsystem, which are described by the linearised quantum Langevin equations (QLE). In the second part of my thesis, I present a way to analytically solve the obtained linearised QLE for the steady state of the system. In addition to this, I discuss the application of two filter functions to the emerging light field, which makes it possible to define two temporally separated modes corresponding to the pulses in the actual experiment and to explore their entanglement. All discussed aspects will ultimately culminate in the implementation of a program which allows the user to generate the covariance matrices for different constellations of subsystems. With the help of this program, influences of different parameters on the entanglement in the system of the above mentioned experiment will be studied that enable predictions for optimal experimental parameters.

Schlagwörter

Schlagwörter
(Englisch)
optomechanical systems steady state quantum Langevin equations analytical computational
Schlagwörter
(Deutsch)
optomechanische Systeme Gleichgewicht Quanten Langevin Gleichungen Analytisch Rechnerisch
Autor*innen
Klemens Winkler
Haupttitel (Englisch)
An analytical and computational approach to steady-state optomechanical systems by quantum Langevin equations
Paralleltitel (Deutsch)
Analytischer und rechnerischer Ansatz für optomechanische Systeme im Gleichgewicht über Quanten Langevin Gleichungen
Publikationsjahr
2018
Umfangsangabe
vi, 91 Seiten : Illustrationen, Diagramme
Sprache
Englisch
Beurteiler*in
Markus Aspelmeyer
Klassifikation
33 Physik > 33.38 Quantenoptik, nichtlineare Optik
AC Nummer
AC15275970
Utheses ID
47007
Studienkennzahl
UA | 066 | 876 | |
Universität Wien, Universitätsbibliothek, 1010 Wien, Universitätsring 1