Detailansicht
Low-scaling algorithms for many-body exchange-like diagrams
Tobias Schäfer
Art der Arbeit
Dissertation
Universität
Universität Wien
Fakultät
Fakultät für Physik
Studiumsbezeichnung bzw. Universitätlehrgang (ULG)
Doktoratsstudium NAWI aus dem Bereich Naturwissenschaften (Dissertationsgebiet: Physik)
Betreuer*in
Georg Kresse
DOI
10.25365/thesis.55347
URN
urn:nbn:at:at-ubw:1-13765.61873.449460-5
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)
Abstracts
Abstract
(Deutsch)
Mit dieser Arbeit wird bewiesen, dass die Entwicklung von niedrig skalierenden Algo-
rithmen zur Berechnung von austauschartigen Vielteilchen-Termen sowohl möglich als
auch praktisch ist. Die Vorhersage von Materialeigenschaften mittels ab initio Metho-
den erfordert effiziente Computerprogramme. Nach wie vor ist die computergestützte
Materialphysik eine der rechenintensivsten Wissenschaftszweige. Das zentrale Problem,
auch bekannt als Problem der elektronischen Struktur, besteht in der Berechnung hinre-
ichend genauer Näherungen zur Vielteilchen-Schrödingergleichung. Die Korrelation von
Elektronen ist dabei von besonderer Bedeutung, bestimmt sie doch maßgeblich Eigen-
schaften wie die Kristallstruktur, Oberflächenenergien oder thermodynamische Phasen-
grenzen. In dieser Arbeit stellen wir neue Algorithmen vor, welche die Effizienz von
Berechnungen der Korrelationsenergie großer Systeme erheblich verbessern. Wir setzen
dabei auf Orbital-basierte Vielteilchen-Störungstheorie und gehen damit über Hartree-
Fock oder Dichtefunktionaltheorie hinaus. Orbitale sind einfache und anschauliche
mathematische Zutaten um Näherungen zur Grundzustandsenergie von Vielteilchensys-
temen zu konstruieren. Allerdings ist die Assoziation eines Orbitals mit einem Elektron
falsch, da Elektronen ununterscheidbar sind, Orbitale dagegen unterscheidbar. Alle ord-
nungsgemäßen Theorien berücksichtigen daher sogenannte austauschartige Terme, die
genau diesen Fehler korrigieren. Diese austauschartigen Terme werden von Methoden
wie zweiter-Ordnung-Møller-Plesset-Störungstheorie (engl. second-order Møller-Plesset
perturbation theory, MP2) oder näherungsweise durch zweiter-Ordnung-abgeschirmter-
Austausch (engl. second-order screened exchange, SOSEX) berücksichtigt. Allerdings
weisen diese austauschartigen Terme eine hohe algorithmische Komplexität auf, was
sich wiederum oft in einem steilem Skalierungsverhalten der Rechenzeit gegenüber der
Systemgröße äußert. Das Hauptziel dieser Arbeit besteht in dem Beweis, dass niedrig-
skalierende Algorithmen zur Berechnung der Austauschterme jedoch sehr wohl möglich
sind. Wir präsentieren drei Algorithmen, welche die Skalierung von MP2- und SOSEX-
Rechnungen von einer quintischen auf eine quartische oder gar kubische Skalierung re-
duzieren. Dabei werden ausschließlich analytische Umformungen vorgenommen, sodass
keinerlei Genauigkeit geopfert wird. Durch diese niedrigere Skalierung ist es möglich,
die Korrelationsenergie mitsamt Austauschtermen für Systeme einiger hundert Valen-
zelektronen mit hoher Genauigkeit zu berechnen. Wir stellen ebenfalls drei grundlegend
verschiedene stochastische Algorithmen vor, welche die Rechenkosten zum Preis von
statistischen Ungenauigkeiten reduzieren. Diese Implementierungen erlauben es, Berech-
nungen an noch größeren Systemen vorzunehmen, wenn nur der relative Fehler pro Elek-
5tron entscheident ist. Des weiteren sind alle implementierten Algorithmen hochgradig
parallelisiert und damit Hochleistungssoftware. Jegliche Betrachtungen verwenden ebe-
nen Wellen, welche eine probate Basis für periodische Systeme darstelle.
Abstract
(Englisch)
In this thesis we prove that developing low-scaling algorithms for many-body exchange-
like contributions to the total energy is both possible and practical. Predicting materials
properties from first principles requires efficient computer codes. Still, ab-initio materials
physics is one of the most computationally demanding fields of all science. The key chal-
lenge is to calculate sufficiently accurate approximations to the many-electron Schrödinger
equation, also known as the electronic structure problem. In particular correlations of the
electrons play an important role in the determination of properties like the crystal struc-
ture, surface energies, or thermodynamic phase boundaries. In this work, we present
new algorithms that substantially increase the efficiency of correlation energy calculations
of large many-electron systems, beyond mean field approaches like density functional or
Hartree-Fock theory, employing orbital-based many-body perturbation theory. Orbitals
are simple and illustrative mathematical ingredients to construct approximations to the
ground state energy of many-electron systems. But associating an orbital with an elec-
tron is wrong, since orbitals are distinguishable though electrons are not. Therefore in
all proper theories so called exchange-like terms must appear, which correct exactly this
error. Those exchange-like terms are taken into account by methods like second-order
Møller-Plesset theory (MP2) or approximate by second-order screened exchange (SO-
SEX). However, the implementation of algorithms that calculate these exchange terms
possess a very high computational complexity, leading to a very steep scaling of the com-
putation time with respect to the system size. The main goal of this thesis is to show,
that low-scaling implementations for exchange-like contributions to the correlation en-
ergy are indeed possible. We present three algorithms which reduce the scaling of MP2
and SOSEX calculations from the canonical quintic to a quartic or even cubic scaling,
by pure analytical rearrangements, i.e. without sacrificing the accuracy. The reduced
scaling allows for accurate correlation energy calculations that including exchange-like
terms on systems which involve several hundreds of valence electrons. We also present
three mutually different stochastic algorithms, which reduce the computational cost at the
price of a statistical error. Those implementations make even larger systems accessible if
only the error per electron is of interest. Furthermore, all implemented codes are highly
parallelized and can be considered as high-performance codes. All considerations are
based on the plane-wave basis, which is a suitable basis for periodic systems.
Schlagwörter
Schlagwörter
(Englisch)
Moller-Plesset MP2 exchange Quantum many-body RPA computational materials physics
Schlagwörter
(Deutsch)
Moller-Plesset MP2 Quanten Vielteilchentheorie RPA Computergestützte Materialphysik
Autor*innen
Tobias Schäfer
Haupttitel (Englisch)
Low-scaling algorithms for many-body exchange-like diagrams
Paralleltitel (Deutsch)
Niedrig-skalierende Algorithmen für austauschartige Vielteilchen-Diagramme
Publikationsjahr
2018
Umfangsangabe
193 Seiten : Diagramme
Sprache
Englisch
Beurteiler*innen
Andreas Grüneis ,
Kristian Sommer Thygesen
AC Nummer
AC15293010
Utheses ID
48916
Studienkennzahl
UA | 796 | 605 | 411 |