Detailansicht

Lozenge tilings of holey hexagons
Won Hyok Kim
Art der Arbeit
Masterarbeit
Universität
Universität Wien
Fakultät
Fakultät für Mathematik
Studiumsbezeichnung bzw. Universitätlehrgang (ULG)
Masterstudium Mathematik
Betreuer*in
Ilse Fischer
Volltext herunterladen
Volltext in Browser öffnen
Alle Rechte vorbehalten / All rights reserved
DOI
10.25365/thesis.60802
URN
urn:nbn:at:at-ubw:1-10832.22372.742973-1
Link zu u:search
(Print-Exemplar eventuell in Bibliothek verfügbar)

Abstracts

Abstract
(Deutsch)
In der Kombinatorik gibt es unzählige Kachelungsprobleme, je nach Form des Gebietes und den Typen von Kacheln. Im Allgemeinen, wenn Region und Kacheln gegeben sind, kann man die folgenden drei Aspekte betrachten: 1. Existenz: Gibt es überhaupt eine Kachelung? 2. Abzählung der Kachelungen: Wie viele Kachelungen gibt es? 3. Asymptotisches Verhalten: Was ist das asymptotische Verhalten der Abzählfunktion, wenn die Region größer wird? In dieser Masterarbeit beschäftige ich mich hauptsächlich mit dem zweiten Thema, der Abzählung. Genauer gesagt beschränken wir uns auf sechseckige Gebiete auf dem Dreiecksgitter für die es immer Kachelungen gibt. Wir geben einen Überblick über einige solche Regionen für die die Abzählung gelungen ist. Darüber hinaus gibt es verschiedene kombinatorische Objekte wie Plane Partitions, nicht-überschneidende Gitterpunktwege, perfekte Matchings und semi-strikte Gelfand-Tsetlin-Muster, die in Bijektion zu den Tilings stehen. Deshalb ist es daher möglich Resultate über diese verwandten Objekte auf die Tilings zu übertragen. Eine Verallgemeinerung besteht nun darin, dass man auch sogenannte Defekte, das sind Löcher in der Region, betrachtet. Auch auf diese Verallgemeinerung wird in dieser Arbeit eingegangen.
Abstract
(Englisch)
In combinatorics, there are many tiling problems as regions and type of tiles can vary. In general, whenever we are given the region to tile and types of tiles, there are 3 things to consider. 1. The tilability of the region : Can one tile the given region with given shapes of tiles? 2. Enumeration of tilings : How many tilings are there? 3. Asymptotic behavior of tilings : What is the asymptotic behavior of the num- ber of tilings, when the region becomes larger? In this thesis, I mainly focused on the second topic - ”Enumeration problem”. Actually the regions we are dealing with in this thesis, are finite hexagonal regions on the triangular lattice plane for which tilability is guaranteed. There are combinatorial objects such as plane partition, non-intersecting lattice paths, perfect matchings and semi-strict Gelfand patterns which are all in bijective correspondence with lozenge tilings. I.e., we can use the enumeration formulas of these objects directly in order to enumerate corresponding lozenge tilings. Furthermore, based on these results, we can also think about hexagonal regions with some holes in it. This thesis deals with tiling problems of such regions and the methods to enumerate them.

Schlagwörter

Schlagwörter
(Englisch)
lozenge tilings non-intersecting lattice paths perfect matchings
Schlagwörter
(Deutsch)
Rhombus Tilings nicht-überschneidende Gitterpunktwege perfekte Matchings
Autor*innen
Won Hyok Kim
Haupttitel (Englisch)
Lozenge tilings of holey hexagons
Publikationsjahr
2020
Umfangsangabe
vii, 58 Seiten : Illustrationen
Sprache
Englisch
Beurteiler*in
Ilse Fischer
Klassifikation
31 Mathematik > 31.12 Kombinatorik, Graphentheorie
AC Nummer
AC15613597
Utheses ID
53727
Studienkennzahl
UA | 066 | 821 | |
Universität Wien, Universitätsbibliothek, 1010 Wien, Universitätsring 1